Concrete Coring of New Structures

Concrete coring is the process of drilling into concrete and obtaining a cylindrical specimen for further analysis. The specimen can be used to analyze the compressive strength, splitting tensile strength, depth and durability of a new or existing structure. When coring is used to understand the compressive strength of a structure, it is usually as a result of low strength results from other methods, such as concrete cylinders. The sampling and time delay due to concrete coring can have detrimental effects on a projects **budget** and **timeline**.

How to Reduce the Need for Coring

Destructive, concrete coring for new structures can be avoided by utilizing an alternative testing method to measure the in-place strength. The current method, standard-cured cylinders, provides a one-time strength result which can be inadequate often due to cylinder storage methods. Implementing concrete maturity as the testing method allows the contractor to have real-time, continuous strength results of the curing concrete.

What is Concrete Maturity?

Maturity is a non-destructive testing method to estimate the in-place strength of concrete by correlating the temperature history of a specific mix to its strength development. The maturity method allows the user to install a SmartRock[™] sensor in the fresh concrete and read real-time temperature and strength values right on the jobsite. Having the ability to read continuous, real-time strength results on the jobsite can help keep projects on track and avoid time delays and costs due to inadequate cylinder results and coring. Maturity is standardized under **ASTM C1074** and specified under **ACI 318-26.12, AASHTO T 325, CSA A23.1, A23.2** and most **DOTs**.

Cost*

1 Set of Cores (3)	Minimum Costs	
Data Collection & Scheduling	\$	75.00
Imaging Costs	\$	400.00
Labor for Physically Drilling	\$	450.00
Excavation Costs	\$	-
Core Delivery Technician	\$	75.00
Core Delivery Mileage	\$	35.00
Techinician Observation	\$	225.00
Labor for Crushing	\$	120.00
Report Review	\$	400.00
# Set o Cores Needed		2.00
Total	\$	3,560.00
Time		
Days Lost		13.00
Labor Cost Per Day	\$	5,000.00
Equipment Rental Cost Per Day	\$	3,000.00
Total	\$ 104,000.00	
Total Cost to Concrete Constractor	\$1	07,560.00
Total Cost to Testing Lab		ZERO

* Costs confirmed by industry. Costs may change due to location and other factors

Coring Schedule

Concrete poured. Cast and cure lab and field cylinders	14-day cylinder strengths come back Iow. Wait for 28-day cylinders	Results from standard-cured specimens are inadequate. Call in inspector to examine structure and determine areas for coring	Core specimens as per ASTM C42/42M and transfer to lab*. Wait a minimum of 5 days to allow the moisture gradient of the cores to reduce after being introduced to water during the drilling process.	Break cylinders and apply relevant correction factor to estimate the strength of the cores**
Day 1	Day 14	Day 28	Day 30	Day 35

* ASTM 42/42M states that concrete should not be cored before 14 days unless sufficient concrete strength can be proven beforehand to not damage samples during extraction

** According to ACI 318, the concrete represented by the cores is considered structurally adequate if the average strength of three cores is at least 85 % of the specified strength and no single core strength is less than 75 % of the specified strength.

